Despite its successes in various machine learning and data science tasks, crowdsourcing can be susceptible to attacks from dedicated adversaries. This work investigates the effects of adversaries on crowdsourced classification, under the popular Dawid and Skene model. The adversaries are allowed to deviate arbitrarily from the considered crowdsourcing model, and may potentially cooperate. To address this scenario, we develop an approach that leverages the structure of second-order moments of annotator responses, to identify large numbers of adversaries, and mitigate their impact on the crowdsourcing task. The potential of the proposed approach is empirically demonstrated on synthetic and real crowdsourcing datasets.


翻译:尽管在各种机器学习和数据科学任务中取得了成功,但众包仍有可能受到专门对手的攻击。这项工作调查了对手对众包分类的影响,根据流行的Dawid和Skene模式。允许对手任意偏离考虑的众包模式,并可能予以合作。为了应对这种情况,我们制定了一种办法,利用标注者反应的第二阶时段结构,确定大量对手,并减轻其对众包任务的影响。拟议办法的潜力在合成和真实的众包数据集上得到了经验的证明。

0
下载
关闭预览

相关内容

专知会员服务
34+阅读 · 2021年9月16日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Arxiv
0+阅读 · 2021年12月2日
Arxiv
0+阅读 · 2021年11月29日
Arxiv
3+阅读 · 2018年6月5日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
相关论文
Arxiv
0+阅读 · 2021年12月2日
Arxiv
0+阅读 · 2021年11月29日
Arxiv
3+阅读 · 2018年6月5日
Top
微信扫码咨询专知VIP会员