We examine the computational energy requirements of different systems driven by the geometrical scaling law, and increasing use of Artificial Intelligence or Machine Learning (AI-ML) over the last decade. With more scientific and technology applications based on data-driven discovery, machine learning methods, especially deep neural networks, have become widely used. In order to enable such applications, both hardware accelerators and advanced AI-ML methods have led to the introduction of new architectures, system designs, algorithms, and software. Our analysis of energy trends indicates three important observations: 1) Energy efficiency due to geometrical scaling is slowing down; 2) The energy efficiency at the bit-level does not translate into efficiency at the instruction-level, or at the system-level for a variety of systems, especially for large-scale AI-ML accelerators or supercomputers; 3) At the application level, general-purpose AI-ML methods can be computationally energy intensive, off-setting the gains in energy from geometrical scaling and special purpose accelerators. Further, our analysis provides specific pointers for integrating energy efficiency with performance analysis for enabling high-performance and sustainable computing in the future.
翻译:我们研究了由几何比例法驱动的不同系统的计算能源要求,以及过去十年中越来越多地使用人工智能或机器学习(AI-ML)的情况。随着基于数据驱动的发现而有更多的科技应用,机器学习方法,特别是深神经网络,已被广泛使用。为了能够应用,硬件加速器和先进的AI-ML方法都导致采用新的结构、系统设计、算法和软件。我们对能源趋势的分析表明三项重要意见:(1) 几何比例缩小后产生的能源效率正在放缓;(2) 位数级的能源效率没有转化为各种系统在教学一级或系统一级的效率,特别是对于大型AI-ML加速器或超级计算机;(3) 在应用一级,通用的AI-ML方法可以进行计算密集的能源,抵消从几何比例和特殊目的加速器中获得的能源收益。此外,我们的分析为将能源效率与业绩分析相结合提供了具体的指针,以便今后能够进行高性能和可持续计算提供了具体指标。