Despite decades of efforts, robot navigation in a real scenario with volatility, uncertainty, complexity, and ambiguity (VUCA for short), remains a challenging topic. Inspired by the central nervous system (CNS), we propose a hierarchical multi-expert learning framework for autonomous navigation in a VUCA environment. With a heuristic exploration mechanism considering target location, path cost, and safety level, the upper layer performs simultaneous map exploration and route-planning to avoid trapping in a blind alley, similar to the cerebrum in the CNS. Using a local adaptive model fusing multiple discrepant strategies, the lower layer pursuits a balance between collision-avoidance and go-straight strategies, acting as the cerebellum in the CNS. We conduct simulation and real-world experiments on multiple platforms, including legged and wheeled robots. Experimental results demonstrate our algorithm outperforms the existing methods in terms of task achievement, time efficiency, and security.
翻译:尽管进行了数十年的努力,在动荡、不确定、复杂和模棱两可的真实情景下,机器人航行(短时间为VUCA)仍是一个具有挑战性的议题。在中枢神经系统(CNS)的启发下,我们提议为VUCA环境中的自主导航建立一个等级分级的多专家学习框架。我们利用一个考虑目标位置、路径成本和安全水平的超强探索机制,上层同时进行地图勘探和路线规划,以避免在像CNS的大脑一样的盲巷中捉摸不透。使用一个地方适应模型,运用多重差异战略,低层在碰撞避免和直观战略之间求得平衡,作为CNS的骨架。我们在多平台上进行模拟和现实世界实验,包括脚和轮式机器人。实验结果表明我们的算法在任务完成、时间效率和安全方面超过了现有方法。