This paper proposes a new class of arbitrarily high-order conservative numerical schemes for the generalized Korteweg-de Vries (KdV) equation. This approach is based on the scalar auxiliary variable (SAV) method. The equation is reformulated into an equivalent system by introducing a scalar auxiliary variable, and the energy is reformulated into a sum of two quadratic terms. Therefore, the quadratic preserving Runge-Kutta method will preserve all the three invariants (momentum, mass and the reformulated energy) in the discrete time flow (assuming the spatial variable is continuous). With the Fourier pseudo-spectral spatial discretization, the scheme conserves the first and third invariant quantities (momentum and energy) exactly in the space-time full discrete sense. The discrete mass possesses the precision of the spectral accuracy. Our numerical experiment shows the great efficiency of this scheme in simulating the breathers for the mKdV equation.
翻译:本文为通用的 Korteweg-de Vries (KdV) 等式提出了一个新的任意高阶保守数字方案类别。 这种方法以 scalar 辅助变量 (SAV) 方法为基础。 该等式通过引入一个 scal 辅助变量(SAV) 重新改制为等效系统, 能量被重新改制为两个二次条件的总和。 因此, 保护龙格- Kutta 的二次二次曲线保存方法将保留离散时间流中的所有三种变异性( 运动、 质量和重塑能量) ( 假设空间变量是连续的 ) 。 有了 Fourier 伪光谱空间分解法, 计划将第一和第二变异性数量( 运动和能量) 完全保留在空间- 完全离散感意义上。 离散质量拥有光谱精度的精度。 我们的数值实验显示, 在为 mKDV 等式 模塑呼吸器时, 这个方案的效率很高 。