In order to achieve a more virtual design and certification process of jet engines in aviation industry, the uncertainty bounds for computational fluid dynamics have to be known. This work shows the application of a machine learning methodology to quantify the epistemic uncertainties of turbulence models. The underlying method in order to estimate the uncertainty bounds is based on an eigenspace perturbation of the Reynolds stress tensor in combination with random forests.
翻译:为了在航空工业中实现更虚拟的喷气发动机设计和认证程序,必须了解计算流体动态的不确定性界限。这项工作表明采用了机器学习方法来量化动荡模型的隐含不确定性。估算不确定性界限的基本方法是基于雷诺兹号与随机森林结合产生的振动压力的天体扰动。