Although many methods for computing the Greeks of discrete-time Asian options are proposed, few methods to calculate the Greeks of continuous-time Asian options are known. In this paper, we develop an integration by parts formula in the multi-dimensional Malliavin calculus, and apply it to obtain the Greeks formulae for both simple and complex continuous-time Asian options in the multi-asset situation. We discuss the asymptotic convergence of simulation estimates for Greeks of continuous-time Asian options by Malliavin derivatives. We combine the traditional Malliavin method with the quasi-Monte Carlo method to calculate the Greeks. We propose to use the conditional quasi-Monte Carlo method to smooth Malliavin Greeks, and show that the calculation of conditional expectations analytically is viable for many common Asian options. We prove that the new estimates for Greeks have good smoothness. For binary Asian options, Asian call options and up-and-out Asian call options, for instance, our estimates are infinitely times differentiable. Numerical experiments demonstrate the large efficiency improvement of the proposed method, especially for options with discontinuous payoff functions.
翻译:尽管提出了许多计算不同时间亚洲选项的希腊人的方法,但很少有方法可以计算持续时间亚洲选项的希腊人。在本文中,我们开发了多元马利亚温计算模型中各部分公式的集成法,并用它来获取多种资产情况下简单和复杂的连续时间亚洲选项的希腊人公式。我们讨论了马利亚温衍生物对希腊人连续时间亚洲选项的模拟估计值的无症状趋同。我们把传统的马利亚温方法与准蒙特卡洛方法结合起来来计算希腊人。我们提议使用有条件的准蒙特卡洛方法来平滑马利亚温希腊语,并表明从分析角度计算有条件的期望对于许多共同亚洲选项是可行的。我们证明希腊人的新估算值是顺畅的。例如,对于二元亚洲选项、亚洲调价选项和上下亚洲调价选项来说,我们的估算值是无限的倍的。数字实验显示了拟议方法的大幅效率改进,特别是对于不连续支付功能的选项而言。