Frictional contact is one of the most challenging problems in computational mechanics. Typically, it is a tough nonlinear problem often requiring several Newton iterations to converge and causing troubles also in the solution to the related linear systems. When contact is modeled with the aid of Lagrange multipliers, the impenetrability condition is enforced exactly, but the associated Jacobian matrix is indefinite and needs a special treatment for a fast numerical solution. In this work, a constraint preconditioner is proposed where the primal Schur complement is computed after augmenting the zero block. The name Reverse is used in contrast to the traditional approach where only the structural block undergoes an augmentation. Besides being able to address problems characterized by singular structural blocks, often arising in contact mechanics, it is shown that the proposed approach is significantly cheaper than traditional constraint preconditioning for this class of problems and it is suitable for an efficient HPC implementation through the Chronos parallel package. Our conclusions are supported by several numerical experiments on mid- and large-size problems from various applications. The source files implementing the proposed algorithm are freely available on GitHub.


翻译:典型的是,这是一个非常棘手的非线性问题,往往需要牛顿的多次迭代才能在相关线性系统的解决方案中集中并造成麻烦。当接触与拉格朗变异器的帮助形成模型时,不易穿透性条件是完全强制执行的,但相关的雅各格矩阵是无限期的,需要为快速数字解决方案提供特殊治疗。在这项工作中,在增加零块后,原始Schur补充物将计算成一个制约性先决条件。使用名称反向器时,与只有结构块进行扩增的传统方法形成对照。除了能够解决以单一结构块为特征的问题外,通常在接触机械中出现的问题,还表明拟议的方法比这类问题的传统限制要便宜得多,适合通过Chronos平行包高效地执行HPC。我们的结论得到了关于各种应用的中大问题的若干数字实验的支持。实施拟议算法的源文件可以在GitHub上自由查阅。

0
下载
关闭预览

相关内容

在数学优化中,拉格朗日乘数法是一种用于寻找受等式约束的函数的局部最大值和最小值的策略(即,必须满足所选变量值必须完全满足一个或多个方程式的条件)。它以数学家约瑟夫·路易斯·拉格朗日命名。基本思想是将受约束的问题转换为某种形式,以便仍可以应用无约束问题的派生检验。函数的梯度与约束的梯度之间的关系很自然地导致了原始问题的重构,即拉格朗日函数。
专知会员服务
31+阅读 · 2021年6月12日
专知会员服务
76+阅读 · 2021年3月16日
专知会员服务
84+阅读 · 2020年12月5日
专知会员服务
17+阅读 · 2020年9月6日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关VIP内容
专知会员服务
31+阅读 · 2021年6月12日
专知会员服务
76+阅读 · 2021年3月16日
专知会员服务
84+阅读 · 2020年12月5日
专知会员服务
17+阅读 · 2020年9月6日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Top
微信扫码咨询专知VIP会员