Multimodal large language models (MLLMs) have achieved remarkable progress on vision-language tasks, yet their reasoning processes remain sometimes unreliable. We introduce PRISM-Bench, a benchmark of puzzle-based visual challenges designed to evaluate not only whether models can solve problems, but how their reasoning unfolds. Unlike prior evaluations that measure only final-answer accuracy, PRISM-Bench introduces a diagnostic task: given a visual puzzle and a step-by-step chain-of-thought (CoT) containing exactly one error, models must identify the first incorrect step. This setting enables fine-grained assessment of logical consistency, error detection, and visual reasoning. The puzzles in PRISM-Bench require multi-step symbolic, geometric, and analogical reasoning, resisting shortcuts based on superficial pattern matching. Evaluations across state-of-the-art MLLMs reveal a persistent gap between fluent generation and faithful reasoning: models that produce plausible CoTs often fail to locate simple logical faults. By disentangling answer generation from reasoning verification, PRISM-Bench offers a sharper lens on multimodal reasoning competence and underscores the need for diagnostic evaluation protocols in the development of trustworthy MLLMs.


翻译:多模态大语言模型(MLLMs)在视觉语言任务上取得了显著进展,但其推理过程有时仍不可靠。我们提出了PRISM-Bench,一个基于谜题的视觉挑战基准,旨在评估模型不仅能解决问题,还能揭示其推理过程。与先前仅衡量最终答案准确性的评估不同,PRISM-Bench引入了一项诊断任务:给定一个视觉谜题和一个包含恰好一个错误的逐步思维链(CoT),模型必须识别出第一个错误步骤。这一设定能够对逻辑一致性、错误检测和视觉推理进行细粒度评估。PRISM-Bench中的谜题需要多步符号、几何和类比推理,抵制基于表面模式匹配的捷径。对多个先进MLLMs的评估揭示了流畅生成与忠实推理之间的持续差距:能够生成合理思维链的模型往往无法定位简单的逻辑错误。通过将答案生成与推理验证分离,PRISM-Bench为多模态推理能力提供了更清晰的视角,并强调了在开发可信赖MLLMs过程中诊断性评估协议的必要性。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员