Various processes can be modelled as quasi-reaction systems of stochastic differential equations, such as cell differentiation and disease spreading. Since the underlying data of particle interactions, such as reactions between proteins or contacts between people, are typically unobserved, statistical inference of the parameters driving these systems is developed from concentration data measuring each unit in the system over time. While observing the continuous time process at a time scale as fine as possible should in theory help with parameter estimation, the existing Local Linear Approximation (LLA) methods fail in this case, due to numerical instability caused by small changes of the system at successive time points. On the other hand, one may be able to reconstruct the underlying unobserved interactions from the observed count data. Motivated by this, we first formalise the latent event history model underlying the observed count process. We then propose a computationally efficient Expectation-Maximation algorithm for parameter estimation, with an extended Kalman filtering procedure for the prediction of the latent states. A simulation study shows the performance of the proposed method and highlights the settings where it is particularly advantageous compared to the existing LLA approaches. Finally, we present an illustration of the methodology on the spreading of the COVID-19 pandemic in Italy.
翻译:暂无翻译