Rubbing restorations are significant for preserving world cultural history. In this paper, we propose the RubbingGAN model for restoring incomplete rubbing characters. Specifically, we collect characters from the Zhang Menglong Bei and build up the first rubbing restoration dataset. We design the first generative adversarial network for rubbing restoration. Based on the dataset we collect, we apply the RubbingGAN to learn the Zhang Menglong Bei font style and restore the characters. The results of experiments show that RubbingGAN can repair both slightly and severely incomplete rubbing characters fast and effectively.
翻译:Rubbing 的恢复对于保存世界文化历史意义重大。 在本文中, 我们推荐了 RubingGAN 模型来恢复不完整的摩擦字符。 具体地说, 我们收集张孟龙北的字符, 并构建第一个摩擦恢复数据集。 我们设计了第一个用于摩擦恢复的基因对抗网络。 根据我们收集的数据集, 我们应用RubingGAN 来学习张孟龙北的字体风格, 并恢复字符。 实验结果显示 RubingGAN 可以快速和有效地修复轻微和严重不完整的摩擦字符 。