Currently, large pre-trained models are widely applied in neural code completion systems, such as Github Copilot, aiXcoder, and TabNine. Though large models significantly outperform their smaller counterparts, a survey with 2,631 participants reveals that around 70\% displayed code completions from Copilot are not accepted by developers. Being reviewed but not accepted, these completions bring a threat to productivity. Besides, considering the high cost of the large models, it is a huge waste of computing resources and energy, which severely goes against the sustainable development principle of AI technologies. Additionally, in code completion systems, the completion requests are automatically and actively issued to the models as developers type out, which significantly aggravates the workload. However, to the best of our knowledge, such waste has never been realized, not to mention effectively addressed, in the context of neural code completion. Hence, preventing such profitless code completions from happening in a cost-friendly way is of urgent need. To fill this gap, we first investigate the prompts of these completions and find four observable prompt patterns, which demonstrate the feasibility of identifying such prompts based on prompts themselves. Motivated by this finding, we propose an early-rejection mechanism to turn down low-return prompts by foretelling the completion qualities without sending them to the LCM. Further, we propose a lightweight Transformer-based estimator to demonstrate the feasibility of the mechanism. The experimental results show that the estimator rejects low-return prompts with a promising accuracy of 83.2%.


翻译:目前,大量预先培训的模型广泛应用于神经代码完成系统,如Github Copil、AiXcoder和TabNine。虽然大型模型大大优于其较小的模型,但有2,631名参与者的调查显示,大约70 ⁇ 显示的Copil的代码完成没有被开发者接受。经过审查但未被接受,这些完成对生产力构成威胁。此外,考虑到大型模型成本高昂,这是对计算资源和能源的巨大浪费,严重违背了AI技术的可持续发展原则。此外,在代码完成系统中,完成请求是自动和积极地发给模型的,因为开发者选择了准确性,大大加重了工作量。然而,据我们所知,这种废物从未实现,更不用说在神经代码完成过程中有效解决了。因此,迫切需要防止这种无利润的代码完成以成本友好的方式进行。为了填补这一空白,我们首先调查这些低质量完成的迅速性,并找到四种可观测的快速模式,这显示了在开发者选择精确性的基础上确定这种速度的可行性,从而大大地加重了工作量。我们提议,将一个快速的升级机制转化为。

0
下载
关闭预览

相关内容

专知会员服务
123+阅读 · 2020年9月8日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
1+阅读 · 2022年10月20日
Arxiv
0+阅读 · 2022年10月19日
Arxiv
14+阅读 · 2019年11月26日
Arxiv
14+阅读 · 2019年9月11日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员