Approximate nearest neighbor search (ANNS) constitutes an important operation in a multitude of applications, including recommendation systems, information retrieval, and pattern recognition. In the past decade, graph-based ANNS algorithms have been the leading paradigm in this domain, with dozens of graph-based ANNS algorithms proposed. Such algorithms aim to provide effective, efficient solutions for retrieving the nearest neighbors for a given query. Nevertheless, these efforts focus on developing and optimizing algorithms with different approaches, so there is a real need for a comprehensive survey about the approaches' relative performance, strengths, and pitfalls. Thus here we provide a thorough comparative analysis and experimental evaluation of 13 representative graph-based ANNS algorithms via a new taxonomy and fine-grained pipeline. We compared each algorithm in a uniform test environment on eight real-world datasets and 12 synthetic datasets with varying sizes and characteristics. Our study yields novel discoveries, offerings several useful principles to improve algorithms. This effort also helped us pinpoint algorithms' working portions, along with rule-of-thumb recommendations about promising research directions and suitable algorithms for practitioners in different fields.
翻译:近邻搜索( ANNS ) 是许多应用中的重要操作, 包括建议系统、 信息检索和模式识别。 在过去的十年中, 基于图形的ANNS 算法是该领域的主要范例, 提出了数十个基于图形的ANNS 算法。 这些算法旨在为检索近邻查询提供有效有效的解决方案。 然而, 这些努力的重点是以不同方法开发和优化算法, 因此确实需要全面调查各种方法的相对性能、 长处和陷阱。 因此, 我们在这里通过一个新的分类和精细的管道, 对基于图表的13个具有代表性的ANNS 算法进行了全面的比较分析和实验性评估。 我们比较了8个真实世界数据集和12个不同大小和特点的合成数据集的统一测试环境中的每一种算法。 我们的研究产生了新的发现, 提供了改进算法的一些有用的原则。 这项努力也有助于我们确定算法的工作部分, 以及关于不同领域从业人员有希望的研究方向和适当算法的规则建议。