Metro systems in megacities such as Beijing, Shenzhen and Guangzhou are under great passenger demand pressure. During peak hours, it is common to see oversaturated conditions (i.e., passenger demand exceeds network capacity), which bring significant operational risks and safety issues. A popular control intervention is to restrict the entering rate during peak hours by setting up out-of-station queueing with crowd control barriers. The \textit{out-of-station waiting} can make up a substantial proportion of total travel time but is not well-studied in the literature. Accurate quantification of out-of-station waiting time is important to evaluating the social benefit and cost of service scheduling/optimization plans; however, out-of-station waiting time is difficult to estimate because it is not a part of smart card transactions. In this study, we propose an innovative method to estimate the out-of-station waiting time by leveraging the information from a small group of transfer passengers -- those who transfer from nearby bus routes to the metro station. Based on the estimated transfer time for this small group, we first infer the out-of-station waiting time for all passengers by developing a Gaussian Process regression with a Student-$t$ likelihood and then use the estimated out-of-station waiting time to build queueing diagrams. We apply our method to the Tiantongyuan North station of Beijing metro as a case study; our results show that the maximum out-of-station waiting time can reach 15 minutes, and the maximum queue length can be over 3000 passengers. Our results suggest that out-of-station waiting can cause significant travel costs and thus should be considered in analyzing transit performance, mode choice, and social benefits. To the best of our knowledge, this paper is the first quantitative study for out-of-station waiting time.


翻译:北京、深圳和广州等特大城市的地铁系统面临巨大的旅客需求压力。 在高峰时段,人们通常看到超饱和的条件(即乘客需求超过网络能力),从而带来巨大的操作风险和安全问题。 大众控制干预的目的是通过设置由人群控制障碍的排队来限制高峰时的入场率。 站外等候时间可在总旅行时间中占很大比例,但在文献中未得到充分研究。 准确计算离岗等候时间对于评估服务时间安排/优化计划的社会效益和成本十分重要; 然而,超时等候时间很难估计,因为它不是智能卡交易的一部分。 在这项研究中,我们提出了一个创新的方法来估计超时的等待时间,通过利用一小批从附近的公共汽车路线转移到地铁站的信息。 根据这一小组的估计转移时间,我们第一次在离校外的日程安排/优化了服务时间安排/优化了服务安排/优化计划的成本; 然而,超时段的等待时间是,我们第一次展示了离时段的运行时间,我们开始的进度,我们开始开始一个高空状态的状态, 来估算了我们前进的状态的状态。

0
下载
关闭预览

相关内容

机器学习组合优化
专知会员服务
110+阅读 · 2021年2月16日
一份简单《图神经网络》教程,28页ppt
专知会员服务
125+阅读 · 2020年8月2日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
已删除
将门创投
3+阅读 · 2019年10月18日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年7月27日
Arxiv
0+阅读 · 2021年7月26日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关VIP内容
机器学习组合优化
专知会员服务
110+阅读 · 2021年2月16日
一份简单《图神经网络》教程,28页ppt
专知会员服务
125+阅读 · 2020年8月2日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
已删除
将门创投
3+阅读 · 2019年10月18日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员