The relevant features for a machine learning task may be aggregated from data sources collected on different nodes in a network. This problem, which we call decentralized prediction, creates a number of interesting systems challenges in managing data routing, placing computation, and time-synchronization. This paper presents EdgeServe, a machine learning system that can serve decentralized predictions. EdgeServe relies on a low-latency message broker to route data through a network to nodes that can serve predictions. EdgeServe relies on a series of novel optimizations that can tradeoff computation, communication, and accuracy. We evaluate EdgeServe on three decentralized prediction tasks: (1) multi-camera object tracking, (2) network intrusion detection, and (3) human activity recognition.
翻译:机器学习任务的相关特征可以从一个网络的不同节点上收集的数据来源中加以汇总。这个问题被称为分散预测,在管理数据路径、计算和时间同步方面造成了一些有趣的系统挑战。本文介绍了EdgeServe,这是一个可以分散预测的机器学习系统。边缘Serve依靠一个低等信息经纪人将数据通过一个网络输送到能够提供预测的节点。边缘Serve依靠一系列新的优化,可以进行计算、通信和准确性交换。我们评估了三个分散预测任务:(1)多镜头物体跟踪,(2)网络入侵探测,(3)人类活动识别。</s>