Rearrangement puzzles are variations of rearrangement problems in which the elements of a problem are potentially logically linked together. To efficiently solve such puzzles, we develop a motion planning approach based on a new state space that is logically factored, integrating the capabilities of the robot through factors of simultaneously manipulatable joints of an object. Based on this factored state space, we propose less-actions RRT (LA-RRT), a planner which optimizes for a low number of actions to solve a puzzle. At the core of our approach lies a new path defragmentation method, which rearranges and optimizes consecutive edges to minimize action cost. We solve six rearrangement scenarios with a Fetch robot, involving planar table puzzles and an escape room scenario. LA-RRT significantly outperforms the next best asymptotically-optimal planner by 4.01 to 6.58 times improvement in final action cost.
翻译:重新排列的拼图是重新排列问题的变体, 问题的要素在逻辑上有可能相互关联。 为了高效地解决这样的拼图, 我们根据一个新的状态空间来制定运动规划方法, 新的状态空间是逻辑因素, 通过一个物体同时可操作的接合因素将机器人的能力融合在一起。 基于这个因素的状态空间, 我们提议减少动作的 RRT (LA- RRRT), 这个规划器能优化解决一个谜题的低数量的行动。 在我们的方法中, 其核心是一种新的路径分解法, 重新排列和优化连续边缘以尽量减少行动成本。 我们用一个拉斐机器人来解决六个重新排列方案, 包括平面拼图和一个逃逸室方案。 LA- RRT 在4. 01 到 6.58 改进最后行动成本的时候, 大大超过下一个最佳的不具有同步性最优化的平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面。