Given a piece of text, the ability to generate a coherent extension of it implies some sophistication, including a knowledge of grammar and semantics. In this paper, we propose a mathematical framework for passing from probability distributions on extensions of given texts to an enriched category containing semantic information. Roughly speaking, we model probability distributions on texts as a category enriched over the unit interval. Objects of this category are expressions in language and hom objects are conditional probabilities that one expression is an extension of another. This category is syntactical: it describes what goes with what. We then pass to the enriched category of unit interval-valued copresheaves on this syntactical category to find semantic information.
翻译:给一个文本, 生成一个连贯扩展的文本的能力意味着一些精密, 包括语法和语义的知识。 在本文中, 我们提出了一个数学框架, 用于将特定文本扩展的概率分布从一个包含语义信息的浓缩类别传递到包含语义信息的浓缩类别。 粗略地说, 我们将文本的概率分布建模成一个在单位间隔上丰富的类别。 本类的物体是语言表达方式, 而 Hom 对象是有条件的概率, 一种表达方式是另一个表达方式的扩展。 这个类别是综合的: 它描述了什么与什么有关的东西。 然后我们通过该合成分类的浓缩的单位间隙值 来找到语义信息 。