Rejection sampling is a popular method used to generate numbers that follow some given distribution. We study the use of this method to generate random numbers in the unit interval from increasing probability density functions. We focus on the problem of sampling from $n$ correlated random variables from a joint distribution whose marginal distributions are all increasing. We show that, in the worst case, the expected number of random bits required to accept or reject a sample grows at least linearly and at most quadratically with $n$.
翻译:拒绝采样是一种常用的方法,用于生成服从特定分布的随机数。本文研究利用该方法从递增概率密度函数生成单位区间内的随机数。我们重点关注从联合分布中采样n个相关随机变量的问题,该联合分布的边缘分布均为递增函数。我们证明,在最坏情况下,接受或拒绝一个样本所需随机位数的期望值至少以线性速率增长,至多以二次速率增长,增长速率与n相关。