We present a Petrov-Gelerkin (PG) method for a class of nonlocal convection-dominated diffusion problems. There are two main ingredients in our approach. First, we define the norm on the test space as induced by the trial space norm, i.e., the optimal test norm, so that the inf-sup condition can be satisfied uniformly independent of the problem. We show the well-posedness of a class of nonlocal convection-dominated diffusion problems under the optimal test norm with general assumptions on the nonlocal diffusion and convection kernels. Second, following the framework of Cohen et al.~(2012), we embed the original nonlocal convection-dominated diffusion problem into a larger mixed problem so as to choose an enriched test space as a stabilization of the numerical algorithm. In the numerical experiments, we use an approximate optimal test norm which can be efficiently implemented in 1d, and study its performance against the energy norm on the test space. We conduct convergence studies for the nonlocal problem using uniform $h$- and $p$-refinements, and adaptive $h$-refinements on both smooth manufactured solutions and solutions with sharp gradient in a transition layer. In addition, we confirm that the PG method is asymptotically compatible.
翻译:我们为一组非本地对流主导扩散问题提出了一个Petrov-Gelerkin (PG) 方法。 我们的方法有两个主要要素。 首先, 我们定义了由试用空间规范引发的测试空间规范, 即最佳测试规范, 以使对流条件能够统一满足, 与问题无关; 我们展示了在最佳测试规范下非本地对流主导扩散问题类别的最佳适应性, 并对非本地传播和对流核心作了一般假设。 其次, 在Cohen 等人( 2012年) 的框架内, 我们将原非本地对流主导扩散问题嵌入一个更大的混合问题, 以便选择丰富测试空间作为数字算法的稳定。 在数字实验中, 我们使用一个大约的最佳测试标准, 可以有效地在1d实施, 并根据测试空间的能源规范研究其性能。 我们对非本地问题进行趋同研究, 使用统一的美元和美元对价的精度的精度, 将原非本地的对价的传播问题纳入一个更大的混合问题, 选择一个丰富的测试空间, 将一个丰富的测试空间稳定地转换成一个我们制造方法, 的升级的升级为稳定的升级的升级, 。