Recent works have demonstrated that natural language can be used to generate and edit 3D shapes. However, these methods generate shapes with limited fidelity and diversity. We introduce CLIP-Sculptor, a method to address these constraints by producing high-fidelity and diverse 3D shapes without the need for (text, shape) pairs during training. CLIP-Sculptor achieves this in a multi-resolution approach that first generates in a low-dimensional latent space and then upscales to a higher resolution for improved shape fidelity. For improved shape diversity, we use a discrete latent space which is modeled using a transformer conditioned on CLIP's image-text embedding space. We also present a novel variant of classifier-free guidance, which improves the accuracy-diversity trade-off. Finally, we perform extensive experiments demonstrating that CLIP-Sculptor outperforms state-of-the-art baselines. The code is available at https://ivl.cs.brown.edu/#/projects/clip-sculptor.


翻译:近来的研究表明,自然语言可用于生成和编辑三维模型。然而,这些方法生成的形状保真度和多样性有限。我们引入了 CLIP-Sculptor 方法来解决这些限制,它可以在没有(文本,形状)对训练的情况下产生高保真度和多样性的三维模型。CLIP-Sculptor 使用多分辨率方法来实现这一目标,首先在低维潜空间中生成,然后升级到更高分辨率以改善形状保真度。为了提高形状多样性,我们使用离散潜空间,该空间是由在 CLIP 的图像文本嵌入空间中所训练的 transformer 变换器建模的。我们还提出了一种新颖的无分类器指导的变体,以改善准确性和多样性的权衡。最后,我们进行了大量实验,证明 CLIP-Sculptor 的效果优于最先进的基准线。代码可在 https://ivl.cs.brown.edu/#/projects/clip-sculptor 上获取。

0
下载
关闭预览

相关内容

【EMNLP2020】自然语言生成,Neural Language Generation
专知会员服务
39+阅读 · 2020年11月20日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
基于PyTorch/TorchText的自然语言处理库
专知
28+阅读 · 2019年4月22日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
7+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
27+阅读 · 2020年12月24日
VIP会员
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
7+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员