Recently, reconstruction-based anomaly detection was proposed as an effective technique to detect attacks in dynamic industrial control networks. Unlike classical network anomaly detectors that observe the network traffic, reconstruction-based detectors operate on the measured sensor data, leveraging physical process models learned a priori. In this work, we investigate different approaches to evade prior-work reconstruction-based anomaly detectors by manipulating sensor data so that the attack is concealed. We find that replay attacks (commonly assumed to be very strong) show bad performance (i.e., increasing the number of alarms) if the attacker is constrained to manipulate less than 95% of all features in the system, as hidden correlations between the features are not replicated well. To address this, we propose two novel attacks that manipulate a subset of the sensor readings, leveraging learned physical constraints of the system. Our attacks feature two different attacker models: A white box attacker, which uses an optimization approach with a detection oracle, and a black box attacker, which uses an autoencoder to translate anomalous data into normal data. We evaluate our implementation on two different datasets from the water distribution domain, showing that the detector's Recall drops from 0.68 to 0.12 by manipulating 4 sensors out of 82 in WADI dataset. In addition, we show that our black box attacks are transferable to different detectors: They work against autoencoder-, LSTM-, and CNN-based detectors. Finally, we implement and demonstrate our attacks on a real industrial testbed to demonstrate their feasibility in real-time.


翻译:最近,基于重建的异常点检测被建议作为一种有效的技术来探测动态工业控制网络中的攻击。与观察网络交通的古典网络异常探测器不同,基于重建的探测器在测量的传感器数据上运行,利用物理过程模型的先验经验。在这项工作中,我们调查了不同的方法,通过操纵传感器数据来规避先前工作的重建异常探测器,从而隐藏袭击。我们发现,如果攻击者受限制,只能操纵不到95%的系统所有特征,而各特征之间的隐藏关联不会被复制出来,则以重建为基础的探测器为例,利用物理过程模型。我们调查了两种不同的攻击者模式:白拳击手,它使用探测器优化,以及黑拳击手,它使用自动电解码将异常器数据转换为正常数据。我们评估了两个不同数据集的安装情况,从黑手线系统实际分布域的隐蔽关系没有被复制出来。为了解决这个问题,我们建议了两个新的攻击行动,操纵了传感器的一部分,利用了该系统的物理限制。我们的攻击有两个不同的攻击模式:白拳击手,用探测器,用探测器和触摸,用黑拳击手将数据转换成正常数据。我们用自动的探测器,我们从0.12号的探测器到自动测试。我们用的是试验,我们用的是试验,我们用的是实验式的试压式的试验,我们用0.制式的仪器显示了。

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年10月31日
数据科学导论,54页ppt,Introduction to Data Science
专知会员服务
41+阅读 · 2020年7月27日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
已删除
将门创投
4+阅读 · 2018年6月1日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Deflecting Adversarial Attacks
Arxiv
8+阅读 · 2020年2月18日
VIP会员
相关资讯
已删除
将门创投
4+阅读 · 2018年6月1日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员