The use of deep learning for human identification and object detection is becoming ever more prevalent in the surveillance industry. These systems have been trained to identify human body's or faces with a high degree of accuracy. However, there have been successful attempts to fool these systems with different techniques called adversarial attacks. This paper presents a final report for an adversarial attack using visible light on facial recognition systems. The relevance of this research is to exploit the physical downfalls of deep neural networks. This demonstration of weakness within these systems are in hopes that this research will be used in the future to improve the training models for object recognition. As results were gathered the project objectives were adjusted to fit the outcomes. Because of this the following paper initially explores an adversarial attack using infrared light before readjusting to a visible light attack. A research outline on infrared light and facial recognition are presented within. A detailed analyzation of the current findings and possible future recommendations of the project are presented. The challenges encountered are evaluated and a final solution is delivered. The projects final outcome exhibits the ability to effectively fool recognition systems using light.


翻译:在监测行业,利用深层学习发现人类身份和物体探测越来越普遍,这些系统经过培训,以高度精确地识别人体或脸孔,但成功地试图用称为对抗性攻击的不同技术愚弄这些系统;本文件介绍了使用面部识别系统可见光线进行对抗性攻击的最后报告;这项研究的相关性是利用深神经网络的物理陷落;这些系统中的这种弱点表明,希望今后将利用这一研究来改进物体识别培训模式;随着项目目标的收集结果的调整,调整以适应结果;由于以下论文,在对可见的光攻击进行重新校正之前,先用红外线光线进行初步探讨对抗性攻击;关于红外线光和面部识别的研究大纲;对目前的调查结果和项目今后可能提出的建议进行详细分析;对遇到的挑战进行评估,并提出最后解决办法;项目的最后结果显示,利用光有效识别系统的能力。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
163+阅读 · 2020年3月18日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
91+阅读 · 2019年10月16日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
39+阅读 · 2019年10月9日
已删除
将门创投
6+阅读 · 2019年7月11日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年1月10日
Arxiv
0+阅读 · 2021年1月9日
Arxiv
12+阅读 · 2020年12月10日
Deflecting Adversarial Attacks
Arxiv
8+阅读 · 2020年2月18日
Generative Adversarial Networks: A Survey and Taxonomy
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
VIP会员
相关资讯
已删除
将门创投
6+阅读 · 2019年7月11日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
相关论文
Arxiv
0+阅读 · 2021年1月10日
Arxiv
0+阅读 · 2021年1月9日
Arxiv
12+阅读 · 2020年12月10日
Deflecting Adversarial Attacks
Arxiv
8+阅读 · 2020年2月18日
Generative Adversarial Networks: A Survey and Taxonomy
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
Top
微信扫码咨询专知VIP会员