The lack of a commonly used benchmark data set (collection) such as (Super-)GLUE (Wang et al., 2018, 2019) for the evaluation of non-English pre-trained language models is a severe shortcoming of current English-centric NLP-research. It concentrates a large part of the research on English, neglecting the uncertainty when transferring conclusions found for the English language to other languages. We evaluate the performance of the German and multilingual BERT-based models currently available via the huggingface transformers library on the four tasks of the GermEval17 workshop. We compare them to pre-BERT architectures (Wojatzki et al., 2017; Schmitt et al., 2018; Attia et al., 2018) as well as to an ELMo-based architecture (Biesialska et al., 2020) and a BERT-based approach (Guhr et al., 2020). The observed improvements are put in relation to those for similar tasks and similar models (pre-BERT vs. BERT-based) for the English language in order to draw tentative conclusions about whether the observed improvements are transferable to German or potentially other related languages.


翻译:缺乏通用基准数据集(收集),例如(Super-)GLUE(Wang等人,2018年,2019年),无法用于评价非英语预培训语言模型(Wang等人,2019年),这是目前以英语为中心的NLP研究的一大缺陷,它集中了大部分关于英语的研究,在将英语的结论转移到其他语言时忽略了不确定性;我们评估了目前通过拥抱式变压器图书馆提供的德国和多语言的BERT模型在GermEval17研讨会四项任务方面的绩效;我们将其与BERT前结构(Wojatzki等人,2017年;Schmitt等人,2018年;Attia等人,2018年)以及基于ELMO的架构(Biesalska等人,2020年)和基于ERT的方法(Guhr等人,2020年)进行了比较,以观察到的改进与类似任务和类似模式(BERT诉BERT公司)在英语方面的情况。

0
下载
关闭预览

相关内容

最新《Transformers模型》教程,64页ppt
专知会员服务
308+阅读 · 2020年11月26日
【EMNLP2020】自然语言生成,Neural Language Generation
专知会员服务
38+阅读 · 2020年11月20日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
LibRec 精选:位置感知的长序列会话推荐
LibRec智能推荐
3+阅读 · 2019年5月17日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
21+阅读 · 2019年8月21日
VIP会员
相关资讯
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
LibRec 精选:位置感知的长序列会话推荐
LibRec智能推荐
3+阅读 · 2019年5月17日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员