We prove the large-dimensional Gaussian approximation of a sum of $n$ independent random vectors in $\mathbb{R}^d$ together with fourth-moment error bounds on convex sets and Euclidean balls. We show that compared with classical third-moment bounds, our bounds have near-optimal dependence on $n$ and can achieve improved dependence on the dimension $d$. For centered balls, we obtain an additional error bound that has a sub-optimal dependence on $n$, but recovers the known result of the validity of the Gaussian approximation if and only if $d=o(n)$. We discuss an application to the bootstrap. We prove our main results using Stein's method.
翻译:我们证明了以$mathbb{R ⁇ d$和四点差错在康韦克斯和欧几里得球上以美元为单位的独立随机矢量的总和的大型高斯近似值。我们证明,与传统的三点差错相比,我们的界限对美元有近乎最佳的依赖性,并能够改善对维度的依赖性。对于中点球,我们得到了额外的错误,对美元的依赖性低于最优,但恢复了高斯近似值有效性的已知结果,如果而且只有$d=o(n)美元。我们讨论了对靴子圈的应用。我们用斯坦的方法证明了我们的主要结果。