In this paper, we propose a vision-based solution for indoor Micro Air Vehicle (MAV) navigation, with a primary focus on its application within autonomous warehouses. Our work centers on the utilization of a single camera as the primary sensor for tasks such as detection, localization, and path planning. To achieve these objectives, we implement the HSV color detection and the Hough Line Transform for effective line detection within warehouse environments. The integration of a Kalman filter into our system enables the camera to track yellow lines reliably. We evaluated the performance of our vision-based line following algorithm through various MAV flight tests conducted in the Gazebo 11 platform, utilizing ROS Noetic. The results of these simulations demonstrate the system capability to successfully navigate narrow indoor spaces. Our proposed system has the potential to significantly reduce labor costs and enhance overall productivity in warehouse operations. This work contributes to the growing field of MAV applications in autonomous warehouses, addressing the need for efficient logistics and supply chain solutions.
翻译:暂无翻译