This paper proposes and analyzes a gradient-type algorithm based on Burer-Monteiro factorization, called the Asymmetric Projected Gradient Descent (APGD), for reconstructing the point set configuration from partial Euclidean distance measurements, known as the Euclidean Distance Matrix Completion (EDMC) problem. By paralleling the incoherence matrix completion framework, we show for the first time that global convergence guarantee with exact recovery of this routine can be established given $\mathcal{O}(\mu^2 r^3 \kappa^2 n \log n)$ Bernoulli random observations without any sample splitting. Unlike leveraging the tangent space Restricted Isometry Property (RIP) and local curvature of the low-rank embedding manifold in some very recent works, our proof provides extra upper bounds that act as analogies of the random graph lemma under EDMC setting. The APGD works surprisingly well and numerical experiments demonstrate exact linear convergence behavior in rich-sample regions yet deteriorates rapidly when compared with the performance obtained by optimizing the s-stress function, i.e., the standard but unexplained non-convex approach for EDMC, if the sample size is limited. While virtually matching our theoretical prediction, this unusual phenomenon might indicate that: (i) the power of implicit regularization is weakened when specified in the APGD case; (ii) the stabilization of such new gradient direction requires substantially more samples than the information-theoretic limit would suggest.


翻译:本文提出并分析了一种基于Burer-Monteiro分解的梯度型算法,称为非对称投影梯度下降(APGD),用于从部分欧几里得距离测量中重建点集构型,即欧几里得距离矩阵补全(EDMC)问题。通过类比非相干矩阵补全框架,我们首次证明在给定$\mathcal{O}(\mu^2 r^3 \kappa^2 n \log n)$个伯努利随机观测值且无需任何样本分割的情况下,该算法能够建立具有精确恢复能力的全局收敛保证。与近期某些工作中利用低秩嵌入流形的切空间限制等距性(RIP)和局部曲率的做法不同,我们的证明提供了额外的上界,这些上界在EDMC设定下起到了随机图引理的类比作用。APGD在实验中的表现令人惊讶:数值实验表明,在样本充足区域该算法呈现精确的线性收敛行为,但在样本量有限时,其性能相较于通过优化s-stress函数(即EDMC中标准但未得到解释的非凸方法)获得的结果会迅速恶化。这一异常现象虽然基本符合我们的理论预测,但可能表明:(i)在APGD情形下,隐式正则化的效力被削弱;(ii)此类新梯度方向的稳定所需样本量远超过信息论极限所建议的数量。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
12+阅读 · 2023年5月22日
Arxiv
15+阅读 · 2022年5月14日
Knowledge Embedding Based Graph Convolutional Network
Arxiv
24+阅读 · 2021年4月23日
Arxiv
21+阅读 · 2021年2月13日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
12+阅读 · 2023年5月22日
Arxiv
15+阅读 · 2022年5月14日
Knowledge Embedding Based Graph Convolutional Network
Arxiv
24+阅读 · 2021年4月23日
Arxiv
21+阅读 · 2021年2月13日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员