In this paper, we propose an image matting framework called Salient Image Matting to estimate the per-pixel opacity value of the most salient foreground in an image. To deal with a large amount of semantic diversity in images, a trimap is conventionally required as it provides important guidance about object semantics to the matting process. However, creating a good trimap is often expensive and timeconsuming. The SIM framework simultaneously deals with the challenge of learning a wide range of semantics and salient object types in a fully automatic and an end to end manner. Specifically, our framework is able to produce accurate alpha mattes for a wide range of foreground objects and cases where the foreground class, such as human, appears in a very different context than the train data directly from an RGB input. This is done by employing a salient object detection model to produce a trimap of the most salient object in the image in order to guide the matting model about higher-level object semantics. Our framework leverages large amounts of coarse annotations coupled with a heuristic trimap generation scheme to train the trimap prediction network so it can produce trimaps for arbitrary foregrounds. Moreover, we introduce a multi-scale fusion architecture for the task of matting to better capture finer, low-level opacity semantics. With high-level guidance provided by the trimap network, our framework requires only a fraction of expensive matting data as compared to other automatic methods while being able to produce alpha mattes for a diverse range of inputs. We demonstrate our framework on a range of diverse images and experimental results show our framework compares favourably against state of art matting methods without the need for a trimap
翻译:在本文中, 我们提出一个名为“ 精度图像 Matting ” 的图像交配框架, 以估计图像中最突出的前台的每像素不透明值。 要处理图像中大量的语义多样性, 通常需要一个三角图, 因为它为交配过程提供了关于对象语义的重要指导 。 但是, 创建一个良好的三角图往往既昂贵又耗时。 SIM 框架同时处理以完全自动的方式和最终的方式, 来评估一系列不同的语义和突出对象输入类型。 具体地说, 我们的框架能够为一系列广泛的前台对象和案例生成准确的阿尔法级图案配方。 在与 RGB 输入的列中直接显示列数据的背景非常不同的情况下, 三角图是使用一个突出的天体探测模型来生成图像中最突出对象的三角图, 以便指导关于更高层次物体的交配模型 。 我们的框架需要大量精度说明, 并且要对一系列不同的前台阶三角图进行精度分析, 比较前台阶的三角网络, 用来对高层次的三角网络进行更精确的三角图谱分析。