We introduce a new consistency-based approach for defining and solving nonnegative/positive matrix and tensor completion problems. The novelty of the framework is that instead of artificially making the problem well-posed in the form of an application-arbitrary optimization problem, e.g., minimizing a bulk structural measure such as rank or norm, we show that a single property/constraint: preserving unit-scale consistency, guarantees the existence of both a solution and, under relatively weak support assumptions, uniqueness. The framework and solution algorithms also generalize directly to tensors of arbitrary dimensions while maintaining computational complexity that is linear in problem size for fixed dimension d. In the context of recommender system (RS) applications, we prove that two reasonable properties that should be expected to hold for any solution to the RS problem are sufficient to permit uniqueness guarantees to be established within our framework. Key theoretical contributions include a general unit-consistent tensor-completion framework with proofs of its properties, e.g., consensus-order and fairness, and algorithms with optimal runtime and space complexities, e.g., O(1) term-completion with preprocessing complexity that is linear in the number of known terms of the matrix/tensor. From a practical perspective, the seamless ability of the framework to generalize to exploit high-dimensional structural relationships among key state variables, e.g., user and product attributes, offers a means for extracting significantly more information than is possible for alternative methods that cannot generalize beyond direct user-product relationships. Finally, we propose our consensus ordering property as an admissibility criterion for any proposed RS method.


翻译:我们引入了一种新的基于一致性的方法,用于定义和解决非负/正矩阵和张量补全问题。该框架的新颖之处在于,我们不是人为地使问题变得易于解决,例如将问题转化为任意优化问题,如最小化秩或范数等结构性度量,而是显示一个属性/约束:保持单位比例一致性,证明了解的存在性,并且在相对较弱的支持假设下,证明了解的唯一性。该框架和解决方案算法也直接推广到任意维度的张量,同时保持计算复杂度是维度d固定时的问题大小的线性级别。在推荐系统(RS)应用的上下文中,我们证明了两个合理的应该满足任何RS问题解的属性是足够的,以保证唯一性得到我们框架内的确立。主要的理论贡献包括具有证明其属性(例如一致性-顺序和公平性)的一般单位一致张量补全框架和具有最佳运行时间和空间复杂度(例如O(1)项补全和预处理复杂度是已知矩阵/张量术语数的线性)的算法。从实践角度来看,框架无缝地推广到利用关键状态变量之间的高维结构关系(例如用户和产品属性)的能力,提供了一种提取比不能超越直接用户-产品关系的替代方法的更多信息的手段。最后,我们提出了我们的一致性顺序属性作为任何提出的RS方法的可接受性标准。

0
下载
关闭预览

相关内容

【NeurIPS2020】点针图网络,Pointer Graph Networks
专知会员服务
39+阅读 · 2020年9月27日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
ICLR2023推荐系统投稿论文集锦
图与推荐
0+阅读 · 2022年11月15日
浅聊对比学习(Contrastive Learning)
极市平台
2+阅读 · 2022年7月26日
浅聊对比学习(Contrastive Learning)第一弹
PaperWeekly
0+阅读 · 2022年6月10日
IJCAI2022推荐系统论文集锦
机器学习与推荐算法
0+阅读 · 2022年5月20日
KDD2020推荐系统论文聚焦
机器学习与推荐算法
15+阅读 · 2020年6月28日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
【推荐】RNN最新研究进展综述
机器学习研究会
25+阅读 · 2018年1月6日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
VIP会员
相关VIP内容
【NeurIPS2020】点针图网络,Pointer Graph Networks
专知会员服务
39+阅读 · 2020年9月27日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
ICLR2023推荐系统投稿论文集锦
图与推荐
0+阅读 · 2022年11月15日
浅聊对比学习(Contrastive Learning)
极市平台
2+阅读 · 2022年7月26日
浅聊对比学习(Contrastive Learning)第一弹
PaperWeekly
0+阅读 · 2022年6月10日
IJCAI2022推荐系统论文集锦
机器学习与推荐算法
0+阅读 · 2022年5月20日
KDD2020推荐系统论文聚焦
机器学习与推荐算法
15+阅读 · 2020年6月28日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
【推荐】RNN最新研究进展综述
机器学习研究会
25+阅读 · 2018年1月6日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员