Group recommender systems are widely used in current web applications. In this paper, we propose a novel group recommender system based on the deep reinforcement learning. We introduce the MovieLens data at first and generate one random group dataset, MovieLens-Rand, from it. This randomly generated dataset is described and analyzed. We also present experimental settings and two state-of-art baselines, AGREE and GroupIM. The framework of our novel model, the Deep Reinforcement learning based Group Recommender system (DRGR), is proposed. Actor-critic networks are implemented with the deep deterministic policy gradient algorithm. The DRGR model is applied on the MovieLens-Rand dataset with two baselines. Compared with baselines, we conclude that DRGR performs better than GroupIM due to long interaction histories but worse than AGREE because of the self-attention mechanism. We express advantages and shortcomings of DRGR and also give future improvement directions at the end.
翻译:当前的网络应用中广泛使用分组推荐系统。 在本文中, 我们提出基于深层强化学习的新颖分组推荐系统。 我们首先引入电影时间线数据, 并从中生成一个随机组数据集, 即MovieLens- Rand。 这个随机生成的数据集被描述和分析。 我们还展示了实验设置和两个最先进的基线( AGREE 和 GroupIM ) 。 我们提出了我们的新颖模型的框架, 即深强化学习小组建议系统( DRGR ) 。 使用深层确定性政策梯度算法来实施动作- 批评网络。 DRGR 模型被应用到具有两个基线的电影时间线数据集上。 与基线相比, 我们的结论是, DRGRR表现优于 GroupIM, 原因是长期的互动历史, 但由于自控机制而比 AGREE 差。 我们展示了 DRGR 的优缺点, 并在最后给出未来的改进方向 。