The biogeochemical complexity of environmental models is increasing continuously and model reliability must be reanalysed when new implementations are brought about. This work aim to identify influential biogeochemical parameters that control the Soil Organic Matter (SOM) dynamics and greenhouse gas emissions in different ecosystems and climates predicted by a physically-based mechanistic model. This explicitly accounts for four pools of organic polymers, seven pools of organic monomers, five microbial functional groups, and inorganic N and C species. We first benchmarked our model against vertical SOM profiles measured in a temperate forest in North-Eastern Bavaria, Germany (Staudt and Foken, 2007). Next, we conducted a sensitivity analysis to biogeochemical parameters using modified Morris indices for target SOM pools and gas emissions from a tropical, a temperate, and a semi-arid grassland in Australia. We found that greenhouse gas emissions, the SOM stock, and the fungi-to-bacteria ratio in the top soil were more sensitive to the mortality of aerobic bacteria than other biogeochemical parameters. The larger CO2 emission rates in forests than in grasslands were explained by a greater dissolved SOM content. Finally, we found that the soil N availability was largely controlled by vegetation inputs in forests and by atmospheric fixation in grasslands
翻译:环境模型的生物地球化学复杂性正在不断增加,模型可靠性必须重新加以分析,在新实施新实施时,这项工作旨在确定具有影响力的生物地球化学参数,以控制土壤有机物质(SOM)动态和不同生态系统和气候中温室气体的排放,这些参数是由物理机械模型预测的。这明确说明了澳大利亚四个有机聚合物、七个有机单体、五个微生物功能组以及无机N和C物种的集合、四个有机聚合物、七个有机单体、五个微生物功能组、以及无机N和C物种。我们首先根据德国东北部巴伐利亚温带森林测量的垂直SOM特征(Staudt和Foken,2007年)。接下来,我们对生物地球化学参数进行了敏感度分析,使用了修改后的Moris指标,用于目标SOM集合以及热带、温带和半干旱草原的气体排放。我们发现,顶层土壤中的温室气体排放、SOM储存和真菌对空气细菌死亡率比其他生物地球化学参数更为敏感。我们发现,在土壤中的土壤中的可控性土壤含量比土壤含量高。最后通过土壤中的可溶化程度来解释,我们在土壤中的土壤中发现的土壤中的可控性土壤中的可溶化程度。