We present a general framework for modelling and verifying epistemic properties over parameterized multi-agent systems that communicate by truthful public announcements. In our framework, the number of agents or the amount of certain resources are parameterized (i.e. not known a priori), and the corresponding verification problem asks whether a given epistemic property is true regardless of the instantiation of the parameters. For example, in a muddy children puzzle, one could ask whether each child will eventually find out whether (s)he is muddy, regardless of the number of children. Our framework is regular model checking (RMC)-based, wherein synchronous finite-state automata (equivalently, monadic second-order logic over words) are used to specify the systems. We propose an extension of public announcement logic as specification language. Of special interests is the addition of the so-called iterated public announcement operators, which are crucial for reasoning about knowledge in parameterized systems. Although the operators make the model checking problem undecidable, we show that this becomes decidable when an appropriate "disappearance relation" is given. Further, we show how Angluin's L*-algorithm for learning finite automata can be applied to find a disappearance relation, which is guaranteed to terminate if it is regular. We have implemented the algorithm and apply this to such examples as the Muddy Children Puzzle, the Russian Card Problem, and Large Number Challenge.
翻译:我们提出了一个用于模拟和核查参数化多试剂系统(通过真实的公开公告进行沟通)的缩写特性的一般框架。 在我们的框架里, 代理商的数量或某些资源的量是参数化的( 也就是不先知的), 相应的核查问题询问给定的缩写属性是否真实, 不论参数的即时化。 例如, 在泥沙儿童拼图中, 人们可以问每个儿童最终是否会发现( s) 他是否泥沙, 不论儿童人数多少。 我们的框架基于定期的模型检查( RMC), 其中使用同步的定点自定义( 相等的, monadic 二级逻辑) 来指定系统 。 我们提议扩展公告逻辑作为规格语言。 特殊的利益是添加所谓的边际公告操作员, 这对于参数化系统知识的推理至关重要。 尽管操作员使得模型检查问题不可辨别, 我们显示, 当给出适当的“ 显示“ 出现差异关系” 时, 即使用同步的定序( 等调) 常规逻辑 来指定系统 。 此外, 我们建议扩大的变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变。