Recent years have witnessed an astonishing explosion in the evolution of mobile applications powered by AI technologies. The rapid growth of AI frameworks enables the transition of AI technologies to mobile devices, significantly prompting the adoption of AI apps (i.e., apps that integrate AI into their functions) among smartphone devices. In this paper, we conduct the most extensive empirical study on 56,682 published AI apps from three perspectives: dataset characteristics, development issues, and user feedback and privacy. To this end, we build an automated AI app identification tool, AI Discriminator, that detects eligible AI apps from 7,259,232 mobile apps. First, we carry out a dataset analysis, where we explore the AndroZoo large repository to identify AI apps and their core characteristics. Subsequently, we pinpoint key issues in AI app development (e.g., model protection). Finally, we focus on user reviews and user privacy protection. Our paper provides several notable findings. Some essential ones involve revealing the issue of insufficient model protection by presenting the lack of model encryption, and demonstrating the risk of user privacy data being leaked. We published our large-scale AI app datasets to inspire more future research.
翻译:近些年来,在使用AI技术的移动应用的演变中发生了惊人的爆炸。AI框架的迅速发展使得AI技术能够向移动设备过渡,大大促进了智能手机设备中采用AI应用程序(即将AI纳入其功能的应用程序)。在本文中,我们从三个角度对已公布的56,682个AI应用程序进行了最广泛的实证研究:数据集特性、发展问题、用户反馈和隐私。为此,我们建立了一个自动AI应用程序识别工具,AI Discriminator,该工具从7,259,232个移动应用程序中检测到符合AI应用条件的AI应用程序。首先,我们进行了数据集分析,我们在这里探索AndroZoo大型储存库,以确定AI应用程序及其核心特性。随后,我们确定了AI应用程序开发(例如模型保护)中的主要问题。最后,我们侧重于用户审查和用户隐私保护。我们的文件提供了几个显著的调查结果。一些基本结论涉及通过展示模型加密的缺乏来揭示模型保护不足的问题,并展示用户隐私数据被泄漏的风险。我们出版了我们的大规模AI App 数据激励未来研究。