We design a user-friendly and scalable knowledge graph construction (KGC) system for extracting structured knowledge from the unstructured corpus. Different from existing KGC systems, gBuilder provides a flexible and user-defined pipeline to embracing the rapid development of IE models. More built-in template-based or heuristic operators and programmable operators are available for adapting to data from different domains. Furthermore, we also design a cloud-based self-adaptive task scheduling for gBuilder to ensure its scalability on large-scale knowledge graph construction. Experimental evaluation not only demonstrates the ability of gBuilder to organize multiple information extraction models for knowledge graph construction in a uniform platform, and also confirms its high scalability on large-scale KGC task.
翻译:我们设计了一个方便用户和可扩展的知识图构建系统,从无结构的构造中提取结构化知识。与现有的KGC系统不同,Guilder提供了灵活和用户定义的管道,以容纳IE模型的快速开发。有更多的基于模板的内置或重型操作员和可编程操作员可用于适应不同领域的数据。此外,我们还为gbuder设计了一个基于云的自适应任务时间安排,以确保其在大规模知识图构建中的可扩展性。实验评估不仅表明gbuilder有能力在统一的平台上为知识图构建组织多种信息提取模型,还证实了其在大规模KGC任务上的高度可扩展性。