Generative models such as Generative Adversarial Networks (GANs) and Variational Autoencoders (VAEs) play an increasingly important role in medical image analysis. The latent spaces of these models often show semantically meaningful directions corresponding to human-interpretable image transformations. However, until now, their exploration for medical images has been limited due to the requirement of supervised data. Several methods for unsupervised discovery of interpretable directions in GAN latent spaces have shown interesting results on natural images. This work explores the potential of applying these techniques on medical images by training a GAN and a VAE on thoracic CT scans and using an unsupervised method to discover interpretable directions in the resulting latent space. We find several directions corresponding to non-trivial image transformations, such as rotation or breast size. Furthermore, the directions show that the generative models capture 3D structure despite being presented only with 2D data. The results show that unsupervised methods to discover interpretable directions in GANs generalize to VAEs and can be applied to medical images. This opens a wide array of future work using these methods in medical image analysis.
翻译:在医学图像分析中,General Adversarial Networks(GANs)和Varitional Autoencoders(VAEs)等生成模型在医学图像分析中发挥着越来越重要的作用。这些模型的潜在空间往往展示出与人类解释的图像转换相对的语义上有意义的方向。然而,迄今为止,由于需要监督数据,其医学图像的探索一直受到限制。在GAN潜在空间中未经监督地发现可解释方向的几种方法在自然图像上显示了有趣的结果。这项工作探索了将这些技术应用于医学图像的潜力,对GAN和VAE进行关于Tthoracic CT扫描的培训,并使用一种不受监督的方法在由此形成的潜意识空间中发现可解释的方向。我们发现了一些与非三角图像转换(如旋转或乳房大小)相对应的方向。此外,这些方向显示,尽管只用 2D 数据来显示,但基因化模型捕捉到3D结构。结果显示,在GANs一般地发现可解释方向的VAEs进行剖析的方法,并且可以应用到医学图像进行医学分析的宽幅式分析。在医学图像中,这种分析中可以打开。