We study whether liquidity and volatility proxies of a core set of cryptoassets generate spillovers that forecast market-wide risk. Our empirical framework integrates three statistical layers: (A) interactions between core liquidity and returns, (B) principal-component relations linking liquidity and returns, and (C) volatility-factor projections that capture cross-sectional volatility crowding. The analysis is complemented by vector autoregression impulse responses and forecast error variance decompositions (see Granger 1969; Sims 1980), heterogeneous autoregressive models with exogenous regressors (HAR-X, Corsi 2009), and a leakage-safe machine learning protocol using temporal splits, early stopping, validation-only thresholding, and SHAP-based interpretation. Using daily data from 2021 to 2025 (1462 observations across 74 assets), we document statistically significant Granger-causal relationships across layers and moderate out-of-sample predictive accuracy. We report the most informative figures, including the pipeline overview, Layer A heatmap, Layer C robustness analysis, vector autoregression variance decompositions, and the test-set precision-recall curve. Full data and figure outputs are provided in the artifact repository.
翻译:本研究探讨一组核心加密资产的流动性与波动率代理变量是否会产生溢出效应,从而预测市场整体风险。我们的实证框架整合了三个统计层:(A) 核心流动性指标与收益率之间的相互作用,(B) 连接流动性与收益率的主成分关系,(C) 捕捉横截面波动率拥挤的波动率因子投影。分析辅以向量自回归脉冲响应与预测误差方差分解(参见 Granger 1969; Sims 1980)、带外生回归量的异质自回归模型(HAR-X, Corsi 2009),以及一种采用时间分割、早停机制、仅验证集阈值化和基于 SHAP 解释的防泄漏机器学习协议。使用 2021 年至 2025 年的日度数据(涵盖 74 种资产的 1462 个观测值),我们记录了各统计层间具有统计显著性的 Granger 因果关系,以及中等程度的样本外预测精度。我们展示了最具信息量的图表,包括流水线概览图、A 层热力图、C 层稳健性分析、向量自回归方差分解图以及测试集精确率-召回率曲线。完整数据与图表输出已提供于成果仓库中。