Data assimilation (DA) aims to optimally combine model forecasts and noisy observations. Multi-model DA generalizes the variational or Bayesian formulation of the Kalman filter, and we prove here that it is also the minimum variance linear unbiased estimator. However, previous implementations of this approach have not estimated the model error, and have therewith not been able to correctly weight the separate models and the observations. Here, we show how multiple models can be combined for both forecasting and DA by using an ensemble Kalman filter with adaptive model error estimation. This methodology is applied to the Lorenz96 model, and it results in significant error reductions compared to the best model and to an unweighted multi-model ensemble.
翻译:数据同化(DA) 旨在优化模型预测和噪音观测的结合。 多模型 DA 概括了卡尔曼过滤器的变异或巴伊西亚配方, 我们在此证明它也是最小差异线性线性线性估测器。 但是, 以前采用这种方法时没有估计模型错误, 因而无法正确权衡不同的模型和观测结果。 这里, 我们用适应模型错误估计, 显示如何将多个模型结合用于预测和DA。 这个方法适用于Lorenz96 模型, 并导致与最佳模型和未加权的多模型共同体相比, 显著的错误减少 。