The health condition of wind turbine (WT) components is crucial for ensuring stable and reliable operation. However, existing fault detection methods are largely limited to visual recognition, producing structured outputs that lack semantic interpretability and fail to support maintenance decision-making. To address these limitations, this study proposes an integrated framework that combines YOLOMS with a large language model (LLM) for intelligent fault analysis and diagnosis. Specifically, YOLOMS employs multi-scale detection and sliding-window cropping to enhance fault feature extraction, while a lightweight key-value (KV) mapping module bridges the gap between visual outputs and textual inputs. This module converts YOLOMS detection results into structured textual representations enriched with both qualitative and quantitative attributes. A domain-tuned LLM then performs semantic reasoning to generate interpretable fault analyses and maintenance recommendations. Experiments on real-world datasets demonstrate that the proposed framework achieves a fault detection accuracy of 90.6\% and generates maintenance reports with an average accuracy of 89\%, thereby improving the interpretability of diagnostic results and providing practical decision support for the operation and maintenance of wind turbines.
翻译:风力涡轮机(WT)部件的健康状况对于确保稳定可靠运行至关重要。然而,现有的故障检测方法主要局限于视觉识别,其产生的结构化输出缺乏语义可解释性,无法支持维护决策。为解决这些局限性,本研究提出了一种集成框架,将YOLOMS与大语言模型(LLM)相结合,用于智能故障分析与诊断。具体而言,YOLOMS采用多尺度检测与滑动窗口裁剪以增强故障特征提取,同时通过轻量级键值(KV)映射模块弥合视觉输出与文本输入之间的差距。该模块将YOLOMS检测结果转化为包含定性与定量属性的结构化文本表示。随后,经过领域调优的LLM执行语义推理,生成可解释的故障分析与维护建议。在真实数据集上的实验表明,所提框架实现了90.6%的故障检测准确率,并生成平均准确率达89%的维护报告,从而提升了诊断结果的可解释性,为风力涡轮机的运维提供了实用的决策支持。