Financial transactions, internet search, and data analysis are all placing increasing demands on databases. SQL, NoSQL, and NewSQL databases have been developed to meet these demands and each offers unique benefits. SQL, NoSQL, and NewSQL databases also rely on different underlying mathematical models. Polystores seek to provide a mechanism to allow applications to transparently achieve the benefits of diverse databases while insulating applications from the details of these databases. Integrating the underlying mathematics of these diverse databases can be an important enabler for polystores as it enables effective reasoning across different databases. Associative arrays provide a common approach for the mathematics of polystores by encompassing the mathematics found in different databases: sets (SQL), graphs (NoSQL), and matrices (NewSQL). Prior work presented the SQL relational model in terms of associative arrays and identified key mathematical properties that are preserved within SQL. This work provides the rigorous mathematical definitions, lemmas, and theorems underlying these properties. Specifically, SQL Relational Algebra deals primarily with relations - multisets of tuples - and operations on and between these relations. These relations can be modeled as associative arrays by treating tuples as non-zero rows in an array. Operations in relational algebra are built as compositions of standard operations on associative arrays which mirror their matrix counterparts. These constructions provide insight into how relational algebra can be handled via array operations. As an example application, the composition of two projection operations is shown to also be a projection, and the projection of a union is shown to be equal to the union of the projections.


翻译:财务交易、互联网搜索和数据分析都对数据库提出了越来越多的要求。 SQL、 NoSQL、 NoSQL、 NewSQL 和 NewSQL 数据库已经开发了满足这些要求的通用方法,每个数据库都提供了独特的好处。 SQL、 NoSQL、 NoSQL 和 NewSQL 数据库也依赖不同的基本数学模型。 聚合存储器寻求提供一个机制,允许应用透明地实现不同数据库的惠益,同时将这些数据库的应用程序从这些数据库的细节中分离出来。 整合这些多样化数据库的基本数学,可以成为多元存储器的重要辅助器,因为它能够在不同数据库中有效推理。 组合数组数组数组数组组成提供了一种共同的数学方法, 组合数组数组数组数组数组组成可以提供这些精确的数学定义、 limmma、 以及这些属性的直径数组数组应用。 具体地说, SQL Algebra 交易主要通过不同数学数据库的数学关系- 多级关系预测, 将这些关系显示为多行数组数组数组数组数组的运行, 。 这些关系显示为直系关系, 直系的直系的运行的直系的直系为直系的直系为直系关系, 直系的直系为直系为直系为直系的直系的直系的直系, 。

0
下载
关闭预览

相关内容

NewSQL是一种新型的关系型数据库。在为OLTP提供像NoSQL那样的伸缩性的同时,提供传统数据库那样的事务ACID保证。
【经典书】统计学习导论,434页pdf,斯坦福大学
专知会员服务
234+阅读 · 2020年4月29日
因果图,Causal Graphs,52页ppt
专知会员服务
247+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
【论文】深度学习的数学解释
机器学习研究会
10+阅读 · 2017年12月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
Arxiv
21+阅读 · 2019年8月21日
Relational recurrent neural networks
Arxiv
8+阅读 · 2018年6月28日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
【论文】深度学习的数学解释
机器学习研究会
10+阅读 · 2017年12月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
Top
微信扫码咨询专知VIP会员