An ego vehicle following a virtual lead vehicle planned route is an essential component when autonomous and non-autonomous vehicles interact. Yet, there is a question about the driver's ability to follow the planned lead vehicle route. Thus, predicting the trajectory of the ego vehicle route given a lead vehicle route is of interest. We introduce a new dataset, the FollowMe dataset, which offers a motion and behavior prediction problem by answering the latter question of the driver's ability to follow a lead vehicle. We also introduce a deep spatio-temporal graph model FollowMe-STGCNN as a baseline for the dataset. In our experiments and analysis, we show the design benefits of FollowMe-STGCNN in capturing the interactions that lie within the dataset. We contrast the performance of FollowMe-STGCNN with prior motion prediction models showing the need to have a different design mechanism to address the lead vehicle following settings.
翻译:自动驾驶和非自动驾驶汽车相互作用时,跟随虚拟引导车规划路线的自我车辆是至关重要的组成部分。然而,存在一个问题,即驾驶员是否能够跟随计划的引导车辆路线。因此,预测给定引导车辆路线的自我车辆路线轨迹具有重要意义。我们介绍了一个新的数据集FollowMe数据集,通过回答驾驶员跟随引导车辆的能力等问题,提供了一个运动和行为预测问题。我们还引入了一个基线模型FollowMe-STGCNN,这是一个用于数据集的深度时空图模型。在我们的实验和分析中,我们展示了FollowMe-STGCNN在捕捉数据集内部相互作用方面的设计优势。我们将FollowMe-STGCNN的性能与先前的运动预测模型进行了对比,结果显示需要具有不同的设计机制来应对引导车辆跟随设置。