Semantic segmentation is the task of classifying each pixel in an image. Training a segmentation model achieves best results using annotated images, where each pixel is annotated with the corresponding class. When obtaining fine annotations is difficult or expensive, it may be possible to acquire coarse annotations, e.g. by roughly annotating pixels in an images leaving some pixels around the boundaries between classes unlabeled. Segmentation with coarse annotations is difficult, in particular when the objective is to optimize the alignment of boundaries between classes. This paper proposes a regularization method for models with an encoder-decoder architecture with superpixel based upsampling. It encourages the segmented pixels in the decoded image to be SLIC-superpixels, which are based on pixel color and position, independent of the segmentation annotation. The method is applied to FCN-16 fully convolutional network architecture and evaluated on the SUIM, Cityscapes, and PanNuke data sets. It is shown that the boundary recall improves significantly compared to state-of-the-art models when trained on coarse annotations.


翻译:语义分割任务旨在对图像中的每个像素进行分类。使用标注图像训练分割模型可获得最佳效果,其中每个像素均标注了相应的类别。当获取精细标注困难或成本高昂时,可采用粗标注方式,例如粗略标注图像中的像素,而将类别边界周围的某些像素留为未标注状态。基于粗标注的分割具有挑战性,尤其是在优化类别间边界对齐的目标下。本文提出一种针对编码器-解码器架构的正则化方法,该方法采用基于超像素的上采样策略。该方法促使解码图像中的分割像素形成SLIC超像素——这类超像素仅依据像素颜色与空间位置生成,与分割标注无关。本方法应用于FCN-16全卷积网络架构,并在SUIM、Cityscapes和PanNuke数据集上进行评估。实验表明,在粗标注训练条件下,该方法相比现有最优模型能显著提升边界召回率。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Arxiv
69+阅读 · 2022年9月7日
Arxiv
13+阅读 · 2022年4月12日
Arxiv
20+阅读 · 2018年1月17日
VIP会员
相关VIP内容
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
69+阅读 · 2022年9月7日
Arxiv
13+阅读 · 2022年4月12日
Arxiv
20+阅读 · 2018年1月17日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员