Sensors with digital outputs require software conversion routines to transform the unitless analogue-to-digital converter samples to physical quantities with correct units. These conversion routines are computationally complex given the limited computational resources of low-power embedded systems. This article presents a set of machine learning methods to learn new, less-complex conversion routines that do not sacrifice accuracy for the BME680 environmental sensor. We present a Pareto analysis of the tradeoff between accuracy and computational overhead for the models and models that reduce the computational overhead of the existing industry-standard conversion routines for temperature, pressure, and humidity by 62%, 71 %, and 18 % respectively. The corresponding RMS errors are 0.0114 degrees C, 0.0280 KPa, and 0.0337 %. These results show that machine learning methods for learning conversion routines can produce conversion routines with reduced computational overhead which maintain good accuracy.
翻译:具有数字输出结果的传感器需要软件转换程序,以便将无单位模拟转换器到数字转换器的样本转换成具有正确单位的实际数量。 这些转换程序在计算上很复杂,因为低功率嵌入系统的计算资源有限。 文章介绍了一套机器学习方法,以学习新的、不牺牲BME680环境传感器精确度的较不复杂的转换程序。 我们展示了Pareto分析模型和模型的精确度和计算间接费用之间的权衡,这些模型和模型将现有的工业标准转换程序在温度、压力和湿度方面的计算间接费用分别减少62%、71%和18%。 相应的RMS错误为0.0114摄氏度、0.0280 KPa和0.0337 %。 这些结果表明,学习转换程序的机器学习方法可以产生转换程序,减少计算间接费用,保持良好准确性。