We consider Fair Principal Component Analysis (FPCA) and search for a low dimensional subspace that spans multiple target vectors in a fair manner. FPCA is defined as a non-concave maximization of the worst projected target norm within a given set. The problem arises in filter design in signal processing, and when incorporating fairness into dimensionality reduction schemes. The state of the art approach to FPCA is via semidefinite relaxation and involves a polynomial yet computationally expensive optimization. To allow scalability, we propose to address FPCA using naive sub-gradient descent. We analyze the landscape of the underlying optimization in the case of orthogonal targets. We prove that the landscape is benign and that all local minima are globally optimal. Interestingly, the SDR approach leads to sub-optimal solutions in this simple case. Finally, we discuss the equivalence between orthogonal FPCA and the design of normalized tight frames.
翻译:我们考虑公平主元件分析(FPCA), 并寻找一个以公平方式覆盖多个目标矢量的低维次空间。 FPCA 被定义为一个特定集中最坏的预测目标规范的不折不扣最大化。 问题出在信号处理中的过滤设计中, 以及在将公平性纳入维度减少计划时出现。 FPCA 的先进方法是通过半无限制的放松, 并包含一个多元但计算成本的优化。 为了允许可缩放性, 我们提议使用天真的次梯级下层来应对 FPCA 。 我们分析了正方位目标中最优化的基本景观。 我们证明景观是良性的, 所有本地微型都是全球最佳的。 有趣的是, 特别提款权方法导致在这个简单案例中的次优化解决方案。 最后, 我们讨论正方形 FPCA 和 常规紧身框架的设计之间的等同性 。