Spectrum has become an extremely scarce and congested resource. As a consequence, spectrum sensing enables the coexistence of different wireless technologies in shared spectrum bands. Most existing work requires spectrograms to classify signals. Ultimately, this implies that images need to be continuously created from I/Q samples, thus creating unacceptable latency for real-time operations. In addition, spectrogram-based approaches do not achieve sufficient granularity level as they are based on object detection performed on pixels and are based on rectangular bounding boxes. For this reason, we propose a completely novel approach based on semantic spectrum segmentation, where multiple signals are simultaneously classified and localized in both time and frequency at the I/Q level. Conversely from the state-of-the-art computer vision algorithm, we add non-local blocks to combine the spatial features of signals, and thus achieve better performance. In addition, we propose a novel data generation approach where a limited set of easy-to-collect real-world wireless signals are ``stitched together'' to generate large-scale, wideband, and diverse datasets. Experimental results obtained on multiple testbeds (including the Arena testbed) using multiple antennas, multiple sampling frequencies, and multiple radios over the course of 3 days show that our approach classifies and localizes signals with a mean intersection over union (IOU) of 96.70% across 5 wireless protocols while performing in real-time with a latency of 2.6 ms. Moreover, we demonstrate that our approach based on non-local blocks achieves 7% more accuracy when segmenting the most challenging signals with respect to the state-of-the-art U-Net algorithm. We will release our 17 GB dataset and code.
翻译:暂无翻译