A fundamental class of inferential problems are those characterised by there having been a substantial degree of pre-data (or prior) belief that the value of a model parameter $\theta_j$ was equal or lay close to a specified value $\theta^{*}_j$, which may, for example, be the value that indicates the absence of a treatment effect or the lack of correlation between two variables. This paper puts forward a generally applicable 'push-button' solution to problems of this type that circumvents the severe difficulties that arise when attempting to apply standard methods of inference, including the Bayesian method, to such problems. Usually the only input of major note that is required from the user in implementing this solution is the assignment of a pre-data or prior probability to the hypothesis that the parameter $\theta_j$ lies in a narrow interval $[\theta_{j0},\theta_{j1}]$ that is assumed to contain the value of interest $\theta^{*}_j$. On the other hand, the end result that is achieved by applying this method is, conveniently, a joint post-data distribution over all the parameters $\theta_1,\theta_2,\ldots,\theta_k$ of the model concerned. The proposed method is constructed by naturally combining a simple Bayesian argument with an approach to inference called organic fiducial inference that was developed in a number of earlier papers. To begin with, the main theoretical arguments underlying this combined Bayesian and fiducial method are presented and discussed in detail. Various applications and useful extensions of this methodology are then outlined in the latter part of the paper. The examples that are considered are made relevant to the analysis of clinical trial data where appropriate.
翻译:暂无翻译