In vascular targeted therapies, blood-borne carriers should realize sustained drug release from the luminal side towards the diseased tissue. In this context, such carriers are required to firmly adhere to the vessel walls for a sufficient period of time while resisting force perturbations induced by the blood flow and circulating cells. Here, a hybrid computational model, combining a Lattice Boltzmann (LBM) and Immersed Boundary Methods (IBM), is proposed for predicting the strength of adhesion of particles in narrow capillaries (7.5 $\mu \mathrm{m})$ traversed by blood cells. While flowing down the capillary, globular and biconcave deformable cells ( $7 \mu \mathrm{m}$ ) encounter $2 \mu \mathrm{m}$ discoidal particles, adhering to the vessel walls. Particles present aspect ratios ranging from $0.25$ to $1.0$ and a mechanical stiffness varying from rigid $(\mathrm{Ca}=0)$ to soft $\left(\mathrm{Ca}=10^{-3}\right)$. Cell-particle interactions are quantitatively predicted over time via three independent parameters: the cell membrane stretching $\delta p$; the cell-to-particle distance $r$, and the number of engaged ligand-receptor bonds $N_{\mathrm{L}}$.
翻译:在血管定向疗法中,血液载体应实现从发光面向病组织持续释放药物。 在这方面, 此类载体必须坚守在容器壁上足够长的一段时间, 抵抗血液流动和循环细胞引起的扰动。 这里, 提议采用混合计算模型, 结合Lattice Boltzmann (LBM) 和 Immersed 边界方法(IBM), 以预测窄的刺青中颗粒的粘合强度( 750 $\ mu \ mathr{m} 美元) 由血细胞所覆盖的体积。 在流进圆柱形、 球形和双相形可变形细胞时, 需要坚守足够长的时间。 这里, 混合的计算模型模型, 结合容器墙壁。 粒子目前的比例从25美元到1美元不等, 机械硬度从$( mathrm {Ca_0) 美元到软体 美元( mettlex) 美元( mark_l_l_ ma) 3 minal deal deal debleblexal exal exal exmexm_____ 10_ lexal_ lexal____ lexal____ lem___ legreal_ legleglexx_________Q__________________ lex________________ lem_ lem_ legelm_ lexxxxx______________________________ lem_____ lexm_ lem____ lebal_ lexm____ lebal_ lem___ lem____ lem_____ lem_m_ lem_ lem_ lem_ lem_ lem_ lem_ lem________