Road traffic accidents remain a significant global concern, with human error, particularly distracted and impaired driving, among the leading causes. This study introduces a novel driver behaviour classification system that uses external observation techniques to detect indicators of distraction and impairment. The proposed framework employs advanced computer vision methodologies, including real-time object tracking, lateral displacement analysis, and lane position monitoring. The system identifies unsafe driving behaviours such as excessive lateral movement and erratic trajectory patterns by implementing the YOLO object detection model and custom lane estimation algorithms. Unlike systems reliant on inter-vehicular communication, this vision-based approach enables behavioural analysis of non-connected vehicles. Experimental evaluations on diverse video datasets demonstrate the framework's reliability and adaptability across varying road and environmental conditions.
翻译:道路交通事故仍是全球范围内的重大关切问题,其中人为失误,特别是分心驾驶和受损驾驶,是主要原因之一。本研究提出了一种新颖的驾驶员行为分类系统,利用外部观测技术检测分心与受损驾驶的指标。该框架采用先进的计算机视觉方法,包括实时目标跟踪、横向位移分析和车道位置监测。通过实施YOLO目标检测模型及定制车道估计算法,系统可识别过度横向移动和不稳定轨迹模式等不安全驾驶行为。与依赖车辆间通信的系统不同,这种基于视觉的方法能够对非联网车辆进行行为分析。在不同视频数据集上的实验评估表明,该框架在多种道路和环境条件下均展现出可靠的性能与适应性。