The proliferation of autonomous Unmanned Aerial Vehicles (UAVs) in Beyond Visual Line of Sight (BVLOS) applications is critically dependent on resilient, high-bandwidth, and low-latency communication links. Existing solutions face critical limitations: TCP's head-of-line blocking stalls time-sensitive data, UDP lacks reliability and congestion control, and cellular networks designed for terrestrial users degrade severely for aerial platforms. This paper introduces AQUILA, a cross-layer communication architecture built on QUIC to address these challenges. AQUILA contributes three key innovations: (1) a unified transport layer using QUIC's reliable streams for MAVLink Command and Control (C2) and unreliable datagrams for video, eliminating head-of-line blocking under unified congestion control; (2) a priority scheduling mechanism that structurally ensures C2 latency remains bounded and independent of video traffic intensity; (3) a UAV-adapted congestion control algorithm extending SCReAM with altitude-adaptive delay targeting and telemetry headroom reservation. AQUILA further implements 0-RTT connection resumption to minimize handover blackouts with application-layer replay protection, deployed over an IP-native architecture enabling global operation. Experimental validation demonstrates that AQUILA significantly outperforms TCP- and UDP-based approaches in C2 latency, video quality, and link resilience under realistic conditions, providing a robust foundation for autonomous BVLOS missions.
翻译:自主无人机在超视距应用中的普及,关键依赖于弹性、高带宽和低延迟的通信链路。现有解决方案面临关键限制:TCP的队头阻塞会延迟时间敏感数据,UDP缺乏可靠性和拥塞控制,而为地面用户设计的蜂窝网络在空中平台上性能严重下降。本文提出AQUILA,一种基于QUIC构建的跨层通信架构,以应对这些挑战。AQUILA贡献了三个关键创新:(1)使用QUIC可靠流传输MAVLink指令控制数据、不可靠数据报传输视频的统一传输层,在统一拥塞控制下消除队头阻塞;(2)优先级调度机制,从结构上确保指令控制延迟保持有界且独立于视频流量强度;(3)扩展SCReAM的无人机自适应拥塞控制算法,具备高度自适应延迟目标与遥测余量预留功能。AQUILA进一步实现0-RTT连接恢复以最小化切换中断,并配备应用层重放保护,部署于支持全球运行的IP原生架构上。实验验证表明,在实际条件下,AQUILA在指令控制延迟、视频质量和链路弹性方面显著优于基于TCP和UDP的方案,为自主超视距任务提供了坚实基础。