Generalized Nested Rollout Policy Adaptation (GNRPA) is a Monte Carlo search algorithm for optimizing a sequence of choices. We propose to improve on GNRPA by avoiding too deterministic policies that find again and again the same sequence of choices. We do so by limiting the number of repetitions of the best sequence found at a given level. Experiments show that it improves the algorithm for three different combinatorial problems: Inverse RNA Folding, the Traveling Salesman Problem with Time Windows and the Weak Schur problem.
翻译:暂无翻译