The wide spread of false information online including misinformation and disinformation has become a major problem for our highly digitised and globalised society. A lot of research has been done to better understand different aspects of false information online such as behaviours of different actors and patterns of spreading, and also on better detection and prevention of such information using technical and socio-technical means. One major approach to detect and debunk false information online is to use human fact-checkers, who can be helped by automated tools. Despite a lot of research done, we noticed a significant gap on the lack of conceptual models describing the complicated ecosystems of false information and fact checking. In this paper, we report the first graphical models of such ecosystems, focusing on false information online in multiple contexts, including traditional media outlets and user-generated content. The proposed models cover a wide range of entity types and relationships, and can be a new useful tool for researchers and practitioners to study false information online and the effects of fact checking.
翻译:网上错误信息的广泛传播,包括错误信息和假信息,已成为我们高度数字化和全球化社会的一个主要问题。我们进行了大量研究,以更好地了解网上错误信息的不同方面,例如不同行为者的行为和传播模式,以及利用技术和社会技术手段更好地发现和预防此类信息。在网上发现和揭发虚假信息的一个主要办法是使用人类事实检查员,他们可以通过自动化工具提供帮助。尽管进行了大量研究,但我们注意到在缺乏描述虚假信息和事实核实的复杂生态系统的概念模型方面存在重大差距。我们在本文件中报告了此类生态系统的第一种图形模型,侧重于多种情况下的虚假信息,包括传统媒体渠道和用户生成的内容。拟议模型涵盖广泛的实体类型和关系,可以成为研究人员和从业人员研究网上虚假信息以及事实核实影响的新有用工具。