We study the generalized multidimensional bin packing problem (GVBP) that generalizes both geometric packing and vector packing. Here, we are given $n$ rectangular items where the $i^{\textrm{th}}$ item has width $w(i)$, height $h(i)$, and $d$ nonnegative weights $v_1(i), v_2(i), \ldots, v_{d}(i)$. Our goal is to get an axis-parallel non-overlapping packing of the items into square bins so that for all $j \in [d]$, the sum of the $j^{\textrm{th}}$ weight of items in each bin is at most 1. This is a natural problem arising in logistics, resource allocation, and scheduling. Despite being well studied in practice, surprisingly, approximation algorithms for this problem have rarely been explored. We first obtain two simple algorithms for GVBP having asymptotic approximation ratios $6(d+1)$ and $3(1 + \ln(d+1) + \varepsilon)$. We then extend the Round-and-Approx (R&A) framework [Bansal-Khan, SODA'14] to wider classes of algorithms, and show how it can be adapted to GVBP. Using more sophisticated techniques, we obtain better approximation algorithms for GVBP, and we get further improvement by combining them with the R&A framework. This gives us an asymptotic approximation ratio of $2(1+\ln((d+4)/2))+\varepsilon$ for GVBP, which improves to $2.919+\varepsilon$ for the special case of $d=1$. We obtain further improvement when the items are allowed to be rotated. We also present algorithms for a generalization of GVBP where the items are high dimensional cuboids.
翻译:我们研究通用的多维垃圾包装问题( GVBP) 。 我们的目标是将项目不重叠的轴- 平方桶包装( GVBP) 。 在这里, 我们得到的是美元, 美元- textrm{th ⁇ $项目宽度为$( i) 美元, 身高为$( i) 美元, 美元非负重为$v_ 1( i), v_ 2( i),\ ldots, v ⁇ d} (i) 美元。 我们的目标是, 以轴- 平面包装方式将项目包装不重叠的轴- 平面包装成平方桶。 对于所有$( d) 美元, 美元- textrlightrm{th{th ⁇ 美元项目的总和宽度为$wwwwwww( $) 。 这是物流、 资源配置和调度过程中产生的自然问题。 令人惊讶的是, 这个问题的近序算算法很少被探讨。 我们首先为GVBPBP 的精度框架( 6 (d+1) $1) 和3+R+R+1) 的改进了。