It is known that the entropy function over a set of jointly distributed random variables is a submodular set function. However, not any submodular function is of this form. In this paper, we consider a family of submodular set functions, called weighted rank functions of matroids, and study the necessary or sufficient conditions under which they are entropic. We prove that weighted rank functions are located on the boundary of the submodularity cone. For the representable matroids over a characteristic 2 field, we show that the integer valued weighted rank functions are entropic. We derive a necessary condition for constant weight rank functions to be entropic and show that for the case of graphic matroids, this condition is indeed sufficient. Since these functions generalize the rank of a matroid, our findings generalize some of the results of Abbe et. al. about entropic properties of the rank function of matroids.


翻译:已知的是,一组共同分布随机变量的酶函数是一个子模块集函数。 但是, 并不是任何子模块函数是这个形式的。 在本文中, 我们考虑的是一组子模块函数, 称为类固醇的加权级函数, 并研究这些函数在什么必要或充分的条件下是进化的。 我们证明, 加权级函数位于亚模式锥体的边界上。 对于一个特性 2 字段的可代表的类固醇, 我们显示, 整数值加权级函数是进化的。 我们为恒定重量级函数设定了一个必要条件, 并显示对于图形类固醇来说, 这个条件确实足够。 由于这些功能概括了类固醇的等级, 我们的研究结果概括了Abbe et. al. 关于类固醇的等级函数的进化特性。

0
下载
关闭预览

相关内容

专知会员服务
124+阅读 · 2020年9月8日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年8月1日
Arxiv
0+阅读 · 2022年7月29日
VIP会员
相关VIP内容
专知会员服务
124+阅读 · 2020年9月8日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员