It is known that the entropy function over a set of jointly distributed random variables is a submodular set function. However, not any submodular function is of this form. In this paper, we consider a family of submodular set functions, called weighted rank functions of matroids, and study the necessary or sufficient conditions under which they are entropic. We prove that weighted rank functions are located on the boundary of the submodularity cone. For the representable matroids over a characteristic 2 field, we show that the integer valued weighted rank functions are entropic. We derive a necessary condition for constant weight rank functions to be entropic and show that for the case of graphic matroids, this condition is indeed sufficient. Since these functions generalize the rank of a matroid, our findings generalize some of the results of Abbe et. al. about entropic properties of the rank function of matroids.
翻译:已知的是,一组共同分布随机变量的酶函数是一个子模块集函数。 但是, 并不是任何子模块函数是这个形式的。 在本文中, 我们考虑的是一组子模块函数, 称为类固醇的加权级函数, 并研究这些函数在什么必要或充分的条件下是进化的。 我们证明, 加权级函数位于亚模式锥体的边界上。 对于一个特性 2 字段的可代表的类固醇, 我们显示, 整数值加权级函数是进化的。 我们为恒定重量级函数设定了一个必要条件, 并显示对于图形类固醇来说, 这个条件确实足够。 由于这些功能概括了类固醇的等级, 我们的研究结果概括了Abbe et. al. 关于类固醇的等级函数的进化特性。